DIE REAKTIONEN VON 2,5-DIARYL-1,3,4-OXADIAZIN-6-ONEN MIT trans-CYCLOOCTEN, cis, trans-CYCLOOCTADIEN UND CYCLOPROPENEN

Manfred CHRISTL* und Ulrike LANZENDÖRFER Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-8700 Würzburg, Bundesrepublik Deutschland

Karl PETERS, Eva-Maria PETERS und Hans Georg VON SCHNERING Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-7000 Stuttgart 80, Bundesrepublik Deutschland

ABSTRACT: The transient [4+2]-cycloadducts from the title components eliminate nitrogen to form a 3,4-dihydro-2-pyrone derivative, a tricyclic cyclobutanone derivative and 2,5-dihydrooxepin-2-one derivatives, respectively.

1-Diethylaminopropin und Dehydrobenzol reagieren im Sinne einer Diels-Alder-Addition mit inversem Elektronenbedarf mit 2,5-Diphenyl-1,3,4-oxadiazin-6-on ($\underline{1}\underline{a}$) und erbringen nach N_2 -Eliminierung aus dem nicht beobachtbaren Primärprodukt 2-Pyrone¹⁾. Auch genügend aktive Alkene lagern sich an $\underline{1}\underline{a}$, jedoch verläuft hier die spontane N_2 -Abspaltung unter Lösung der CO-Einfachbindung, so daß formal eine Benzoyl- und eine Phenylketenylgruppe $\underline{\text{cis}}$ -orientiert an die CC-Doppelbindung addiert wurden. Diese Verbindungen sind anhand ihrer charakteristischen IR-Absorptionen beobachtbar und stabilisieren sich zu 3,4-Dihydro-2-pyron-Derivaten²⁾. Im Falle von Benzvalen findet eine rasche [2+2]-Cycloaddition der zunächst gebildeten Ketenfunktion an eine seitliche Bindung des Bicyclo[1.1.0]butan-Systems statt, woraus ein tetracyclisches Cyclopentanon-Derivat hervorgeht²⁾.

<u>cis-</u>Cycloocten und <u>cis,cis-</u>1,5-Cyclooctadien sind inert gegenüber <u>1a</u>, jedoch reagiert <u>trans-</u>Cycloocten³⁾ rascher als alle bisher verwendeten Alkene. Nach drei Stunden bei 20°C in Tetra-chlormethan zeigte das IR-Spektrum der Reaktionslösung die maximale Intensität einer Bande bei

Tabelle: Einige physikalische Daten der neuen Verbindungen (IR-Spektren in KBr; NMR-Spektren in CDCl₃, &-Werte)

```
<u>1b</u>: Schmp. 174-176°C; IR: 1765 cm<sup>-1</sup> (C=0).
\underline{1}c: Schmp. 206-207°C; IR: 1755 cm<sup>-1</sup> (C=0).
\frac{1}{10}: Schmp. 188-190°C; IR: 1765 cm<sup>-1</sup> (C=0).
3: Schmp. 153-154°C; IR: 1755 cm<sup>-1</sup> (C=O); <sup>1</sup>H-NMR: 1.44-2.00 (11H; m), 2.40 (1H; m), 2.79 (1H;
m), 3.90 (12-H; d, J<sub>1 12</sub>=2Hz), 7.20-7.44 (2 C<sub>6</sub>H<sub>5</sub>; m).
5: Schmp. 125°C; IR: 1774 (Cyclobutanon-C=0), 1675 cm<sup>-1</sup> (Benzoyl-C=0); <sup>1</sup>H-NMR: 1.72-1.85 (3H;
m), 2.20-2.44 (4H; m) 2.58 (1H; m), 2.69 (1H; m), 2.89 (1H; m), 3.19 (1H; m), 3.47 (1H; m),
7.18-7.54 (2 C<sub>6</sub>H<sub>5</sub>; m).
<u>8a</u>: Schmp. 73-74°C; IR: 1716 cm<sup>-1</sup> (C=0); <sup>1</sup>H-NMR: 2.95 (5-H<sub>2</sub>; t, J_{4.5}=J_{5.6}=7.1Hz), 6.20 (6-H;
t), 6.90 (4-H; t), 7.20-7.75 (2 C<sub>6</sub>H<sub>5</sub>; m).
<u>8b</u>: Schmp. 121-122°C; IR: 1727 cm<sup>21</sup> (C=0); <sup>1</sup>H-NMR: 2.98 (5-H<sub>2</sub>; t, J<sub>4,5</sub>=J<sub>5,6</sub>=7.0Hz), 3.82 (OCH<sub>3</sub>;
s), 6.10 (6-H; t), 6.94 (4-H; t), 6.90 und 7.56 (AA'BB'-Spektrum der 4-Methoxyphenylgruppe),
7.20-7.50 (C<sub>6</sub>H<sub>5</sub>; m).
<u>8c</u>: Schmp. 128-129°C; IR: 1722 cm<sup>-1</sup> (C=0); {}^{1}H-NMR: 2.96 (5-H<sub>2</sub>; t, J<sub>4.5</sub>=J<sub>5.6</sub>=7.2Hz) , 3.82
(2 OCH<sub>3</sub>; br.s), 6.10 (6-H; t), 6.77-7.04 (4-H, 4 aromat. H; m), 7.25-7.68 (4 aromat. H; m).
<u>8d</u>: Schmp. 95-96°C; IR: 1715 cm<sup>-1</sup> (C=0); ^{1}H-NMR: 1.45 (2 CH<sub>3</sub>; s), 5.92 (6-H; s), 6.73 (4-H; s),
7.25-7.80 (2 C<sub>6</sub>H<sub>5</sub>; m).
8e: Schmp. 155-157°C; IR: 1720 cm<sup>-1</sup> (C=0); ^{1}H-NMR: 1.48 (2 CH<sub>3</sub>; s), 6.22 (6-H; s), 6.73 (4-H;
s), 7.40 (C<sub>6</sub>H<sub>5</sub>; br.s), 7.65 (Pyridy1-3-H, -5-H; m), 8.70 (Pyridy1-2-H, -6-H; br.s).
9: Schmp. 126-128°C; IR: 1712 cm<sup>-1</sup> (C=0); ^{1}H-NMR: 2.00 (CH<sub>3</sub>; s), 3.02 (5-CH<sub>2</sub>; d, J_{4.5}=7.2Hz),
7.07 (4-H; t), 7.25-7.55 (2 C<sub>6</sub>H<sub>5</sub>; m).
<u>10</u>: Schmp. 60-65°C (noch unrein!); ^{1}H-NMR: 1.86 (CH<sub>3</sub>; s), 2.97 (5-CH<sub>2</sub>; d, J<sub>5 6</sub>=7.2Hz), 6.28
(6-H; t), 7.20-7.80 (2 C<sub>6</sub>H<sub>5</sub>; m).
11a: Schmp. 98-100°C; IR: 1770 cm<sup>-1</sup> (C=0); <sup>1</sup>H-NMR: 3.91 (3-H; br.d, J_{3.4}=5.3 Hz), 6.00 (4-H;
dd, J_{4,5}=9.0Hz), 6.50 (5-H; ddd, J_{3,5}=2.0Hz, J_{5,6}=5.6Hz), 6.65 (6-H; dd, J_{3,6}=0.9Hz), 7.30-7.55
(8 aromat. H; m), 7.65-7.90 (2 aromat. H; m).
11b: Schmp. 144-145°C; IR: 1760 cm<sup>-1</sup> (C=0); <sup>1</sup>H-NMR: 3.85 (OCH<sub>3</sub>; s), 3.88 (3-H; d, J<sub>3.4</sub>≈5Hz),
5.92 (4-H, m), 6.32-6.61 (5-H, 6-H; m), 6.95 und 7.67 (AA'BB'-Spektrum der 4-Methoxyphenyl-
gruppe), 7.40 (C_6H_5, s).
```

²⁰⁹⁰ cm $^{-1}$, die von der Zwischenstufe $\frac{1}{2}$ herrührte. Erhitzte man jetzt eine Stunde auf 40-50°C, so verschwand die erwähnte IR-Bande vollständig und das 3,4-Dihydro-2-pyron-Derivat $\frac{3}{4}$ war mit 49% Ausbeute isolierbar.

Mit der Reaktion zwischen $\underline{1}\underline{a}$ und $\underline{cis,trans}$ -1,5-Cyclooctadien⁵⁾ verbanden wir die Hoffnung, daß auf der Zwischenstufe $\underline{4}$ eine intramolekulare [2+2]-Cycloaddition der Ketenfunktion an die CC-Doppelbindung eintreten würde. Eine IR-Bande der Reaktionslösung bei 2090 cm⁻¹ deutete die Bildung von $\underline{4}$ an, das jedoch erheblich kurzlebiger war als $\underline{2}$. Nach zwei Stunden bei 20°C in Tetrahydrofuran fielen bei der Aufarbeitung mit 69% Ausbeute farblose Kristalle an, deren Konstitution und Konfiguration durch eine Röntgenstrukturanalyse aufgeklärt wurden. Von den beiden möglichen Orientierungen der transannularen [2+2]-Cycloaddition in $\underline{4}$ ist also nur jene zum offensichtlich weniger ringgespannten endo-7-Benzoyl-1-phenyltricyclo[4.4.0.0^{3,10}]decan-2-on ($\underline{5}$) realisiert.

$$\begin{array}{c} R \\ R \\ \end{array} + \begin{array}{c} Ar^{1} \\ N \\ Ar^{2} \\ \end{array} + \begin{array}{c} Ar^{1} \\ N \\ Ar^{2} \\ \end{array} + \begin{array}{c} Ar^{1} \\ N \\ Ar^{2} \\ \end{array} + \begin{array}{c} Ar^{1} \\ N \\ Ar^{2} \\ \end{array} + \begin{array}{c} Ar^{1} \\ N \\ Ar^{2} \\ \end{array} + \begin{array}{c} Ar^{1} \\ N \\ Ar^{2} \\ \end{array} + \begin{array}{c} Ar^{1} \\ N \\ Ar^{2} \\ \end{array} + \begin{array}{c} Ar^{1} \\ N \\ Ar^{2} \\ \end{array} + \begin{array}{c} Ar^{1} \\ N \\ Ar^{2} \\ \end{array} + \begin{array}{c} Ar^{1} \\ N \\ R \\ \end{array} + \begin{array}{c} Ar^{1} \\ N \\ \end{array}$$

Cyclopropen⁶⁾ lagerte $\underline{1}\underline{a}$ in Tetrahydrofuran schon bei 0°C rasch an. Eine Zwischenstufe konnte hier nicht beobachtet werden. Statt dessen zeigte das IR-Spektrum der Reaktionslösung unmittelbar die Banden von 3,7-Diphenyl-2,5-dihydrooxepin-2-on ($\underline{8}\underline{a}$)⁴, das mit 86% Ausbeute isoliert wurde. Als Derivat des \underline{cis} -Divinylcyclopropans könnte die Zwischenstufe $\underline{7}$ eine rasche Cope-Umlagerung zu $\underline{8}\underline{a}$ eingehen. Vielleicht tritt $\underline{7}$ aber gar nicht auf, denn die \underline{N}_2 -Abspaltung

aus dem Primäraddukt $\underline{6}$ unter Lösung der zentralen Cyclopropanbindung führte direkt zu $\underline{8}\underline{a}$. Neben $\underline{1}\underline{a}$ setzten wir auch 2-(4-Methoxyphenyl)-5-phenyl- $(\underline{1}\underline{b})^4$,7) und 2,5-Bis(4-methoxyphenyl)-1,3,4-oxadiazin-6-on $(\underline{1}\underline{c})^4$,7) mit Cyclopropen um, woraus $\underline{8}\underline{b}^4$) und $\underline{8}\underline{c}^4$) mit 89 bzw. 53% Ausbeute hervorgingen. Um das im Vergleich zur Stammsubstanz wesentlich trägere 3,3-Dimethyl-cyclopropen⁸) zur Reaktion zu bringen, war es erforderlich, mehrere Tage im Autoklaven auf 110°C zu erhitzen. Mit $\underline{1}\underline{a}$ und 5-Phenyl-2-(4-pyridyl)-1,3,4-oxadiazin-6-on $(\underline{2}\underline{d})^7$) in Tetrahydrofuran fielen $\underline{8}\underline{d}^4$) und $\underline{8}\underline{e}^4$) in bescheidenen Ausbeuten von 10 bzw. 20% an. 1-Methylcyclopropen⁹) ist kaum weniger reaktiv als Cyclopropen selbst und lieferte mit $\underline{1}\underline{a}$ in Tetrahydrofuran bei 20°C mit 65% Ausbeute ein 2:1-Gemisch aus $\underline{9}^4$) und $\underline{10}^4$).

Beim Versuch der Chromatographie an basischem Aluminiumoxid isomerisierten $\underline{8}\underline{a}$ und $\underline{8}\underline{b}$ unter Wasserstoffwanderung zu $\underline{11}\underline{a}$ und $\underline{11}\underline{b}$ (18 bzw. 42% Ausbeute).

DANKSAGUNG: Die Deutsche Forschungsgemeinschaft und der Fonds der Chemischen Industrie haben diese Arbeit großzügig gefördert. Herrn Professor Dr. W. Steglich, Universität Bonn, danken wir für die Oberlassung dieses Arbeitsgebiets.

LITERATUR UND FUSSNOTEN

- 1. W. Steglich, E. Buschmann, G. Gansen und L. Wilschowitz, Synthesis, 252 (1977).
- 2. M. Christl, U. Lanzendörfer und S. Freund, <u>Angew. Chem.</u>, <u>93</u>, 686 (1981); <u>Angew. Chem. Int.</u> <u>Ed. Engl.</u>, <u>20</u>, 674 (1981).
- Dargestellt nach J. Graefe, M. Mühlstädt und P. Kuhl, Z. Chem., 10, 191 (1970).
- 4. Alle neuen Verbindungen mit Ausnahme von 10 und 11a, deren Reinigung noch nicht gelungen ist, ergaben korrekte Elementaranalysenwerte und Massenspektren, die mit den vorgeschlagenen Strukturen im Einklang sind.
- Dargestellt nach J. A. Deyrup und M. Betkouski, <u>J. Org. Chem.</u>, <u>37</u>, 3561 (1972) oder nach
 J. Leitich, Tetrahedron, <u>38</u>, 1303 (1982).
- 6. Dargestellt nach G. L. Closs und K. D. Krantz, <u>J. Org. Chem.</u>, <u>31</u>, 638 (1966).
- 7. Synthese analog zu jener von 1a, Methode B in Lit. 1.
- 8. Dargestellt nach P. Binger, Synthesis, 190 (1974).
- 9. Dargestellt nach F. Fisher und D. E. Applequist, <u>J. Org. Chem.</u>, $\underline{30}$, 2089 (1965).

(Received in Germany 2 November 1982)